MODERN MANAGEMENT OF URINARY TRACT STONES

George Fowlis
BSc(Hons)Yale FRCS(Eng) MD FRCS(Urol) FEBU
Consultant Urological Surgeon
Independent Practice, London UK

EPIDEMIOLOGY

- Most painful urological disorder.
- □ ↑ incidence in renal stone disease.
- ↓Age of onset of symptomatic stones
- Peak incidence: 30s-40s(previously 40s-50s)
- 1.6 male : 1 female. (3 :1 in 1975).
- Life-time risk
 - 10% in UK, 15% in USA, 20% in SA,
- Recurrence rate
- 10% at 1yr, 35% at 3yrs & 50% at 5yrs

Surgical management of urinary tract stones

- Asymptomatic stones
- Treatment of symptomatic renal, ureteric & bladder stones
- Acute ureteric colic
- Rigid & flexible ureterorenoscopy
- Bladder procedures
- Advances in stone management
- New endourological management options

Asymptomatic kidney stones

77% of untreated asymptomatic stones will lead to complications, a quarter will require surgery due to persistent severe pain or kidney blockage

J Endourol 2004 Aug; 18(6):534-9

Treatment of renal stones

• ESWL

- Flexible ureterorenoscopy & laser stone removal (FURS)
- Percutaneous nephrolithotomy (PCNL)

ESWL

- Dornier studied effects of shock waves on tissue 1969
- Dornier HM3 Lithotriptor 1980
- FDA approval 1984
- Non-invasive first line Rx for stones < 2cm
- Overall stone-free rates were 76% (RP), 69% (UC), 68% (MC) and 59% (LC)

ESWL

- 2nd and 3rd generation lithotriptors more userfriendly
- Efficacy not surpassed HM3
- Higher stone recurrence rate in ESWL compared to PCNL
- ESWL 22% and PCNL 4% at 1 year

ESWL

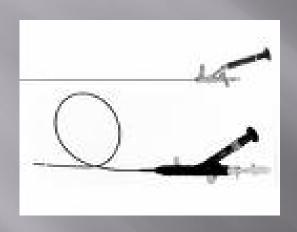
- ESWL success can be predicted by stone density measured on non-contrast CT
 KUB
- CT Hounsfield unit> 1000 suggest veryhard stone andESWL failure

Flexible ureterorenoscopy

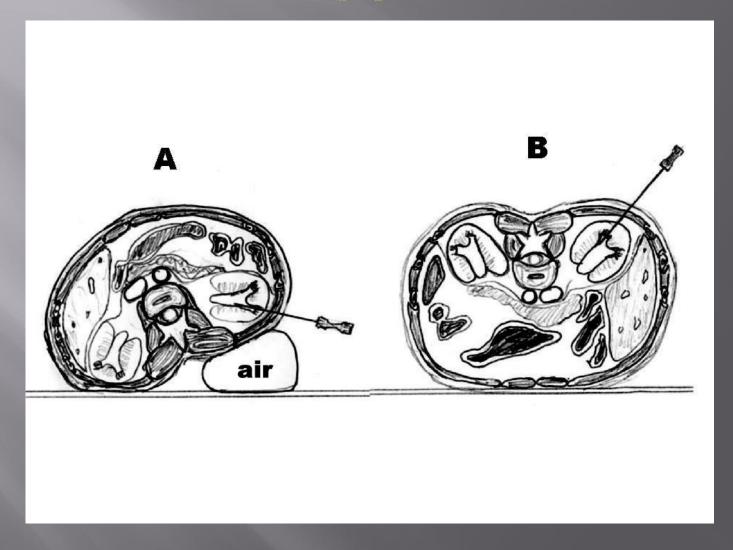
- 1964 Marshall 3mm fibrescope passed transurethrally via a 26F cystoscope into ureter
- 1971 Takagi 2mm flexible ureterosocpe 75cm long & 2.5 cm angulating tip
- Modern day digital fibreoptic imaging bundle, working channels and dual-direction active deflection

Flexible ureterorenoscopy

- Holmium laser
- Tipless baskets
- Access sheaths



Flexible ureterorenoscopy



- Visualisation of intra-renal collecting system
- Laser disintegration of kidney stones
- Laser widening of pelvi-ureteric junction obstruction
- Laser treatment of upper tract TCC

Percutaneous nephrolithotomy

- 19th century, not acceptable to operate directly on kidneys
- Conservative measures include ostrich egg shell & scorpion oil
- 1879 Heinecke Pyelolithotomy
- 1881 Nephrolithotomy
- 1976 Fernstrom Percutaneous access
- 1980 Wickham & Kellett, Alken PCNL

PCNL approaches

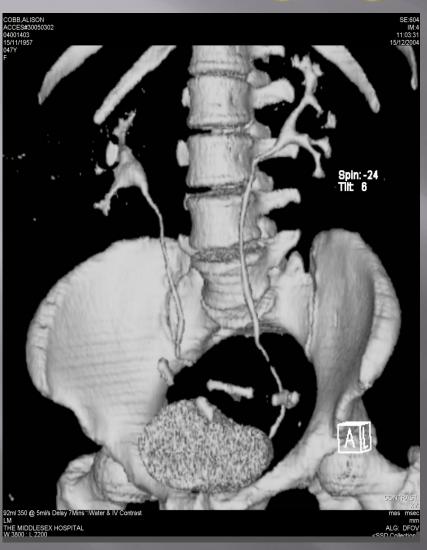
Percutaneous nephrolithotomy

- Treatment of large kidney stones, dilated PC system
- Lower pole renal stones
- Calyceal diverticulum
- PUJ or ureteric obstruction
- Ileal conduit, neobladder
- Stone-free in single op
- Large upper ureteric stones
- Encrusted stent
- Large prostate, rapid encruster

Lower pole renal stones

•	Size (mm)	ESWL	PCNL	p value
•	0-10	67%	100% 0.017	
•	11-20	21%	92%	0.0001
•	21-30	14%	100% 0.033	
•	Overall	35%	96%	< 0.001

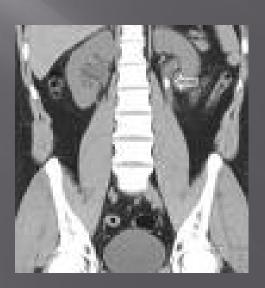
Percutaneous nephrolithotomy


- Encrusted Double-J stent
- Combined
 Cystolitholapaxy,
 laser ureterolithotomy
 and PCNL
- Swiss Lithoclast Master reduced operating time by half

Acute ureteric colic

- Analgesia Diclofenac 100 mg pr and/or Pethidine and antiemetic
- Alpha-blocker eg. Tamsulosin 400 μg od
 ?increases spontaneous stone passage rate by
 29% (Medical Expulsion Therapy MET)
- Primary endoscopic laser ureterolithotomy
- Emergency stenting and stent symptoms

CT imaging and planning



- Increasing use of CT for diagnosis of acute ureteric colic
- CT useful in planning for treatment of complex stone cases

CT Imaging and Diagnosis

- Non-contrast CT KUB
- Rapid diagnosis
- No side effects of contrast
- Abdominal abnormalities

ESWL and URS

- Overall for stones in Proximal Ureter,
 no significant difference b/t ESWL & URS
- Proximal Stones <10mm, ESWL↑</p>
- Proximal Stones >10mm, URS sig↑
- □ Distal Stones, URS↑ ≤10mm & >10mm(sig)
- Mid Stones, ns between ESWL & URS (sig)

Rigid ureteroscopy

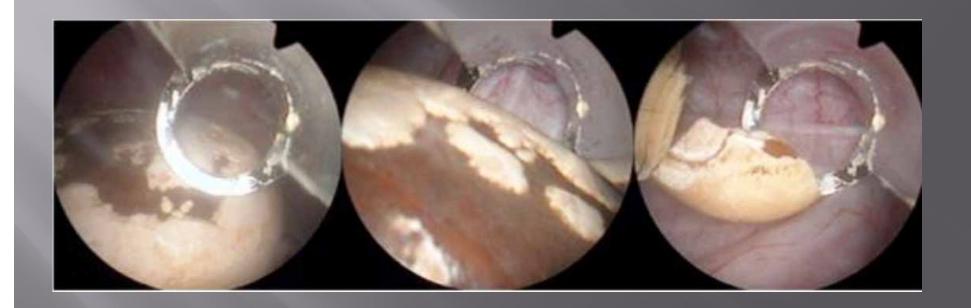
- 1912 Hugh Hampton Young
 Rigid cystoscope into dilated
- 1960 Invention of Rod-lens system

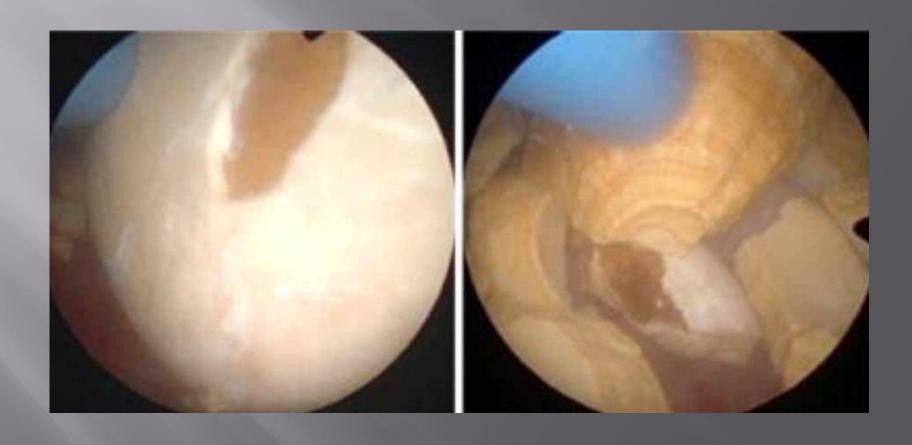
ureter

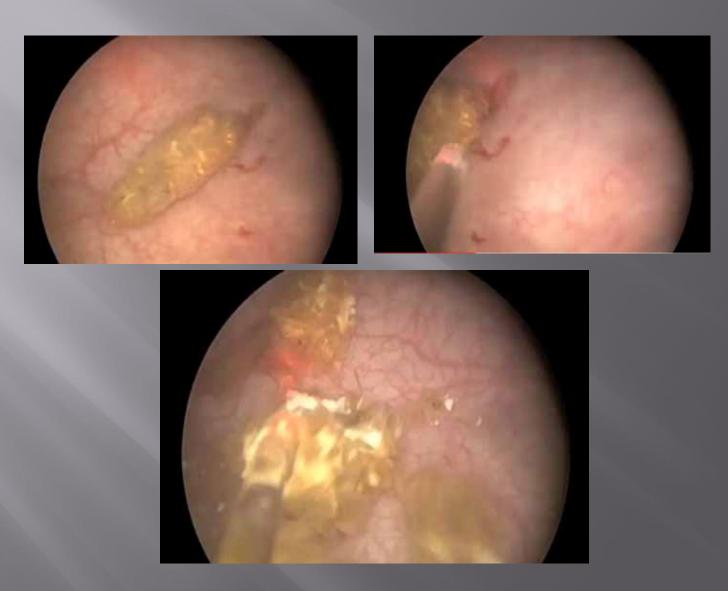
- 1977 Goodman 9.5Fr
 paediatric cystoscope into distal ureter in women
- 1979 Wolf 23cm, 13 to 16 Fr

Bladder Stones

- Traditionally open cystolithotomy +/retropubic prostatectomy
- Cystolitholapaxy+/- TURP
- Lasertripsy


Images




Stone punch

Electrohydraulic Lithoclast

Lasertripsy

Stent symptoms

- Bladder irritation
- Urinary frequency
- Painful micturition
- Haematuria
- Loin pain
- Dipstick urine will show WBC and RBC
- Encrustation

Conclusion 1 Modern instruments

- Fibreoptics, digital cameras and chip-on-tip
- Imaging 3-D CT urogram
- Smaller rigid ureteroscopes4.5 Fr
- Flexible ureterorenoscopes
- Stone cone and nitinol baskets
- Holmium lasers

Conclusion 2 Successful management

- Rapid imaging & diagnosis CT or IVU
- Multiple modalities to treat kidney stones
- ESWL, Laser ureterolithotomy, Flexible renoscopy & lasering, Percutaneous nephrolithotomy, Nephrostomy tube insertion
- Ability to respond to urgent / emergency cases
- MDT approach
- Prevention

Conclusion 3 New advances

- Asymptomatic kidney stones should be treated
- Alpha-blocker increase spontaneous stone passage rate by 29%
- Stone density can be measured by Hounsfield unit (HU) on CT
- HU > 1000 very hard stone and ESWL failure

Conclusion 4 New advances

- Paediatric stone management
- Renal sparing ureterorenoscopy to laser remove TCC in ureter & collecting system
- Ureteroscopic laser widening of PUJ obstruction
- Rendezvous procedure to manage ureteric injuries and avoid open repair
- Endoscopic laser removal of TVT bladder erosion

Conclusion 5

- Stone is merely a symptom of underlying disease
- Surgical intervention treat stones but do not solve underlying disease or prevent stone recurrences
- MDT approach

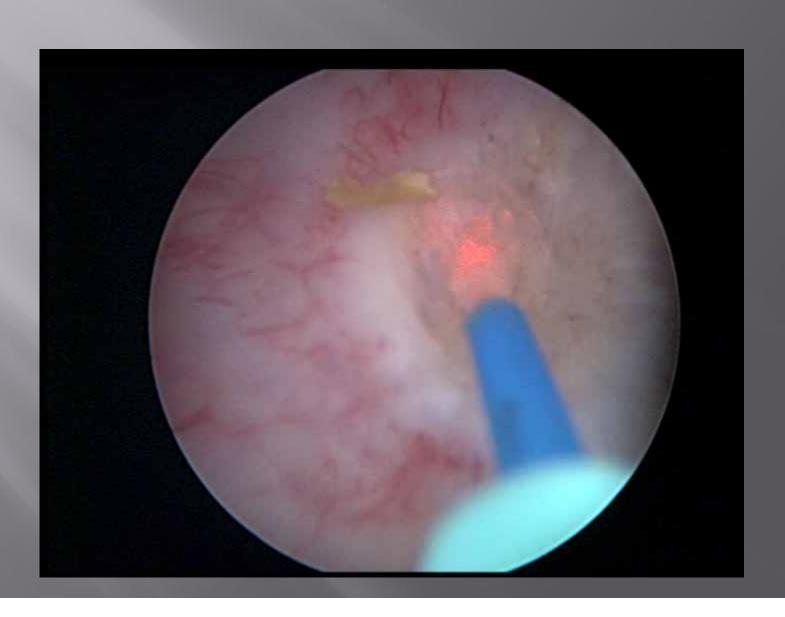
New endourological management

- Endoscopic laser vapourisation of upper tract TCC
- Endoscopic laser widening of PUJ obstruction
- Flexible renoscopy and laser widening of calyceal diverticulum & stone removal
- Laser removal of eroded TVT into bladder
- Rendezvous procedure for ureteric injuries

Modern instruments

Upper tract TCC

- Nephroureterectomy for upper tractTCC
- Endoscopic laser treatment effective and safe for low grade TCC
- Renal sparing


Eroded TVT with stone formation

Eroded TVT with stone formation

Laser removal of Eroded TVT

Post-lap-hysterectomy

Contrast in sigmoid from fistula

fistula

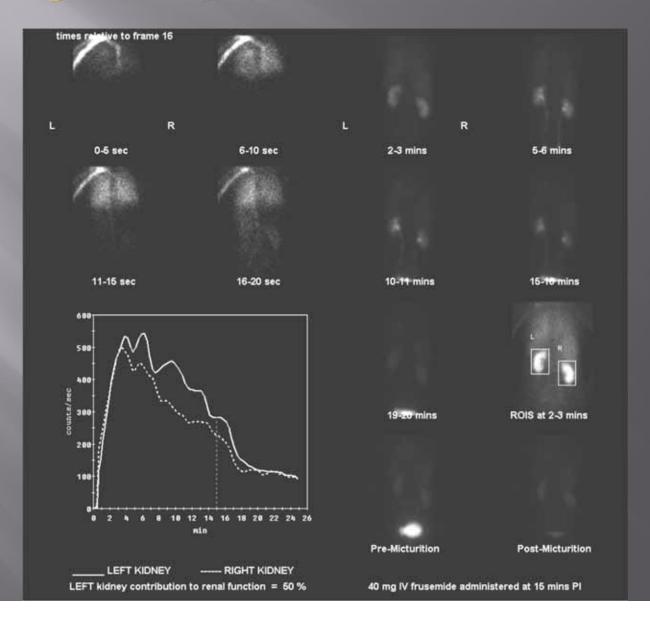
Air in ureter

Fistula into sigmoid and vagina

Contrast in sigmoid

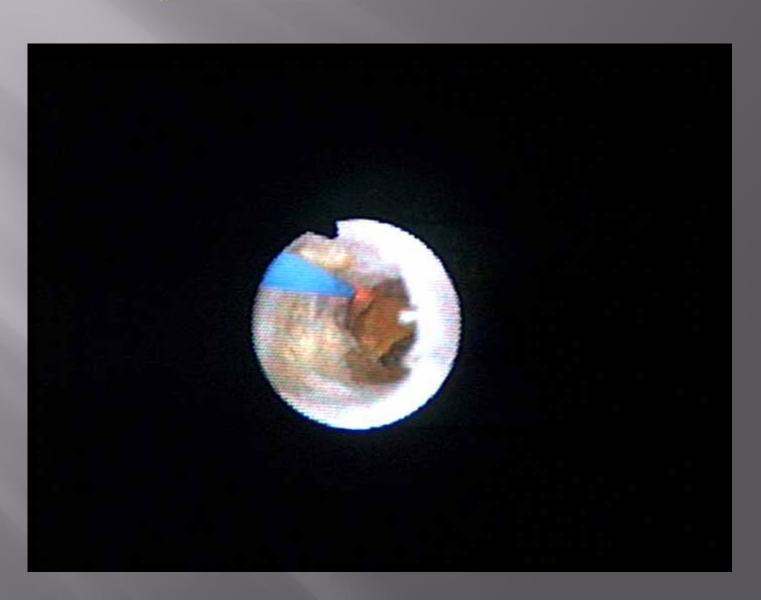
Leak in vagina

Rendezvous


Rendezvous



Rendezvous


MAG3 renogram after 6 months

